| , | BLE STANDA | RD | | | | | | | | |---|---|--|--|------------|--|--|---|---|---| | | OPERATING TEMPERATURE RANGE VOLTAGE | | -40 °C TO +105 °C | C (NOTE1) | STORAGE
TEMPERATU | IRE RANGE | -40 °C TO +105 | 5 °C | | | RATING | | | 250 V AC | | CURRENT | | 3 A | | | | | | SPECIFICATIONS | | | | 5 | | | | | ľ | TEM | | TEST METHOD |) | | REQU | IREMENTS | QT | Α | | CONSTRU | JCTION | 1 | | | Į. | | | | | | GENERAL EXAMINATION | | VISUALLY AND BY MEASURING INSTRUMEN | | | NT. ACC | ACCORDING TO DRAWING. | | | × | | MARKING | | CONFIRMED VISUALLY. | | | | | | | × | | ELECTRIC | CHARACTER | RISTICS | | | | | | | | | CONTACT RESISTANCE | | 1A DC. | | | 30 m | nΩ MAX. | | _ | _ | | CONTACT RESISTANCE MILLIVOLT LEVEL METHOD | | 20 mV AC MAX, 0.1 mA(OR 1kHz) | | | 30 m | 30 mΩ MAX. | | | _ | | INSULATION RESISTANCE | | 500 V DC | | | 100 | 100 MΩ MIN. | | | + _ | | VOLTAGE PROOF | | 1000 V AC FOR 1 min. | | | | NO FLASHOVER OR BREAKDOWN. | | | +_ | | MECHANICAL CHARACT | | | | | | 110 1 2 10 110 12 11 0 11 2 11 2 11 11 | | | | | CONTACT MATING FORCE | | 100mm/min WITH CONTACT ITSELF | | | INSER | INSERTION FORCE : 4.9N MAX. | | | | | MECHANICAL OPERATION VIBRATION | | 30 TIMES INSERTIONS AND EXTRACTIONS. | | | . ① 00 | (T) CONTACT DECISTANCE: 60 C MAY | | | + | | | | | | | _ | ① CONTACT RESISTANCE: 60 mΩ MAX ② NO DAMAGE, CRACK AND LOOSENESS, OF PARTS. | | | | | | | FREQUENCY 20 TO 400 Hz, 43.1m/s ² , | | | Ŭ | 1 NO ELECTRICAL DISCONTINUITY OF 10 µs. | | | +_ | | | | AT 3h FOR 3 DIRECTIONS. | | | _ | ② CONTACT RESISTANCE:60 mΩ MAX | | | - | | 0110011 | | | | | | ③ NO DAMAGE, CRACK AND LOOSENESS, OF PARTS. | | | _ | | SHOCK | SHOCK | | FREQUENCY 20 TO 50 Hz,66.6m/ s ² AT 1 h. | | | NO ELECTRICAL DISCONTINUITY OF 10 μs. CONTACT RESISTANCE:60 mΩ MAX | | | _ | | | | | | | | 3 NO DAMAGE, CRACK AND LOOSENESS, OF PARTS. | | | _ | | LOCK STRENGTH | | APPLYING A PULL FORCE THE MATING
AXIALLY AT 98N MAX. | | | _ | | G,MATING COMPLETELY. | × | _ | | | | | | | 2 AFT | ② AFTER APPLYING,NO DEFECT OF MATING PARTS. | | | _ | | DAMP HEAT (STEADY STATE) RAPID CHANGE OF | | EXPOSED AT 60°C, 90 TO 95%, 500h. TEMPERATURE:-40→5 TO 35→120→5 TO 35°C | | | . 00 | CONTACT RESISTANCE: 60 mΩ MAX. INSULATION RESISTANCE:100 MΩ MIN. NO DAMAGE, CRACK AND LOOSENESS, OF PARTS. CONTACT RESISTANCE: 60 mΩ MAX. | | | | | DADID OLIANO | 25.05 | TEMPER | MATURE: 40 \s TO 25 \120 | `E TO 25°C | 3 NO I | DAMAGE, CRACK | AND LOOSENESS, OF PARTS. | × | -
 - | | RAPID CHANG | | | RATURE:-40→5 TO 35→120-
1→5→30→5 min | →5 TO 35°C | 3 NO I | DAMAGE, CRACK
NTACT RESIS | AND LOOSENESS, OF PARTS. | | | | TEMPERATUR | | TIME: 30
UNDER | 0→5→30→5 min
1000 CYCLES. | →5 TO 35°C | 3 NO I
1 COI
2 INS
3 NO I | DAMAGE, CRACK
NTACT RESIS
ULATION RES
DAMAGE, CRACK | AND LOOSENESS, OF PARTS. TANCE: $60 \text{ m}\Omega$ MAX. ISTANCE: $100 \text{ M}\Omega$ MIN. AND LOOSENESS, OF PARTS. | ×
- | <u>-</u>
 - | | TEMPERATUR | | TIME: 30
UNDER |)→5→30→5 min | →5 TO 35°C | 3 NO I C 1 COI 2 INS 3 NO I 1 COI | DAMAGE, CRACK
NTACT RESIS
ULATION RES
DAMAGE, CRACK
NTACT RESIS | AND LOOSENESS, OF PARTS. TANCE: $60 \text{ m}\Omega$ MAX. ISTANCE: $100 \text{ M}\Omega$ MIN. | ×
-
× | -
 -
 - | | | | TIME: 30
UNDER
EXPOSE | 0→5→30→5 min
1000 CYCLES. | →5 TO 35°C | 3 NO I COI 2 INS 3 NO I COI 2 NO I COI 2 NO I | DAMAGE, CRACK NTACT RESIS ULATION RES DAMAGE, CRACK NTACT RESIS DAMAGE, CRACK NTACT RESIS | AND LOOSENESS, OF PARTS. TANCE: $60 \text{ m}\Omega$ MAX. ISTANCE: $100 \text{ M}\Omega$ MIN. AND LOOSENESS, OF PARTS. TANCE: $60 \text{ m}\Omega$ MAX. AND LOOSENESS, OF PARTS. TANCE: $60 \text{ m}\Omega$ MAX. | × - × × | -
 -
 - | | TEMPERATUF | RE | TIME: 30
UNDER
EXPOSE | 0→5→30→5 min
1000 CYCLES.
ID AT 105°C, 300h. | →5 TO 35°C | 3 NO I COI 2 INS 3 NO I COI 2 NO I COI 2 NO I | DAMAGE, CRACK NTACT RESIS ULATION RES DAMAGE, CRACK NTACT RESIS DAMAGE, CRACK NTACT RESIS | AND LOOSENESS, OF PARTS. TANCE: 60 mΩ MAX. ISTANCE:100 MΩ MIN. AND LOOSENESS, OF PARTS. TANCE: 60 mΩ MAX. AND LOOSENESS, OF PARTS. | × - × × - × - × | -
 -
 - | | TEMPERATUR
DRY HEAT
COLD | RE | TIME: 30
UNDER
EXPOSE | D→5→30→5 min
1000 CYCLES.
D AT 105°C, 300h. | →5 TO 35°C | 3 NO I COI 2 INS 3 NO I COI 2 NO I COI 2 NO I COI 2 NO I COI 2 NO I | DAMAGE, CRACK NTACT RESIS ULATION RES DAMAGE, CRACK NTACT RESIS DAMAGE, CRACK NTACT RESIS | AND LOOSENESS, OF PARTS. TANCE: $60 \text{ m}\Omega$ MAX. ISTANCE: $100 \text{ M}\Omega$ MIN. AND LOOSENESS, OF PARTS. TANCE: $60 \text{ m}\Omega$ MAX. AND LOOSENESS, OF PARTS. TANCE: $60 \text{ m}\Omega$ MAX. AND LOOSENESS, OF PARTS. TANCE: $60 \text{ m}\Omega$ MAX. AND LOOSENESS, OF PARTS. | × - x - x x | | | TEMPERATUR
DRY HEAT
COLD | RE | TIME: 30
UNDER
EXPOSE | D→5→30→5 min
1000 CYCLES.
D AT 105°C, 300h. | →5 TO 35°C | 3 NO I COI 2 INS 3 NO I COI 2 NO I COI 2 NO I COI 2 NO I COI 2 NO I | DAMAGE, CRACK NTACT RESIS' ULATION RES DAMAGE, CRACK NTACT RESIS' DAMAGE, CRACK NTACT RESIS' DAMAGE, CRACK | AND LOOSENESS, OF PARTS. TANCE: $60 \text{ m}\Omega$ MAX. ISTANCE: $100 \text{ M}\Omega$ MIN. AND LOOSENESS, OF PARTS. TANCE: $60 \text{ m}\Omega$ MAX. AND LOOSENESS, OF PARTS. TANCE: $60 \text{ m}\Omega$ MAX. AND LOOSENESS, OF PARTS. TANCE: $60 \text{ m}\Omega$ MAX. AND LOOSENESS, OF PARTS. | × | -
 -
 - | | TEMPERATUF DRY HEAT COLD RESISTANCE | TO SO ₂ GAS | EXPOSE EXPOSE | D→5→30→5 min
1000 CYCLES.
D AT 105°C, 300h. | | 3 NO I COI 2 INS 3 NO I COI 2 NO I COI 2 NO I COI 2 NO I COI 2 NO I | DAMAGE, CRACK NTACT RESIS' ULATION RES DAMAGE, CRACK NTACT RESIS' DAMAGE, CRACK NTACT RESIS' DAMAGE, CRACK | AND LOOSENESS, OF PARTS. TANCE: $60 \text{ m}\Omega$ MAX. ISTANCE: $100 \text{ M}\Omega$ MIN. AND LOOSENESS, OF PARTS. TANCE: $60 \text{ m}\Omega$ MAX. AND LOOSENESS, OF PARTS. TANCE: $60 \text{ m}\Omega$ MAX. AND LOOSENESS, OF PARTS. TANCE: $60 \text{ m}\Omega$ MAX. AND LOOSENESS, OF PARTS. | X | | | TEMPERATUF DRY HEAT COLD RESISTANCE | TO SO ₂ GAS | EXPOSE EXPOSE | D→5→30→5 min
1000 CYCLES.
D AT 105°C, 300h.
D AT −40°C, 120h.
D IN 500 PPM FOR 8h. | | (3) NO I
(2) INS
(3) NO I
(1) COI
(2) NO I
(2) NO I
(2) NO | DAMAGE, CRACK NTACT RESIS' ULATION RES DAMAGE, CRACK NTACT RESIS' DAMAGE, CRACK NTACT RESIS' DAMAGE, CRACK NTACT RESIS' DAMAGE, CRACK NTACT RESIS' HEAVY CORR | AND LOOSENESS, OF PARTS. TANCE: 60 mΩ MAX. ISTANCE:100 MΩ MIN. AND LOOSENESS, OF PARTS. TANCE: 60 mΩ MAX. AND LOOSENESS, OF PARTS. TANCE: 60 mΩ MAX. AND LOOSENESS, OF PARTS. TANCE: 60 mΩ MAX. OSION. CHECKED | x - x - x - x DA | | | COUNT | TO SO ₂ GAS | EXPOSE EXPOSE EXPOSE CRIPTION | D→5→30→5 min 1000 CYCLES. D AT 105°C, 300h. D AT -40°C, 120h. D IN 500 PPM FOR 8h. | | (3) NO I
(2) INS
(3) NO I
(1) COI
(2) NO I
(2) NO I
(2) NO | DAMAGE, CRACK NTACT RESIS' ULATION RES DAMAGE, CRACK NTACT RESIS' DAMAGE, CRACK NTACT RESIS' DAMAGE, CRACK | AND LOOSENESS, OF PARTS. TANCE: 60 mΩ MAX. ISTANCE:100 MΩ MIN. AND LOOSENESS, OF PARTS. TANCE: 60 mΩ MAX. OSION. | X | —————————————————————————————————————— | | COUNT | TO SO ₂ GAS | EXPOSE EXPOSE EXPOSE CRIPTION | D→5→30→5 min 1000 CYCLES. D AT 105°C, 300h. D AT -40°C, 120h. D IN 500 PPM FOR 8h. | | (3) NO I
(2) INS
(3) NO I
(1) COI
(2) NO I
(2) NO I
(2) NO | DAMAGE, CRACK NTACT RESIS' ULATION RES DAMAGE, CRACK NTACT RESIS' DAMAGE, CRACK NTACT RESIS' DAMAGE, CRACK NTACT RESIS' DAMAGE, CRACK NTACT RESIS' HEAVY CORR | AND LOOSENESS, OF PARTS. TANCE: 60 mΩ MAX. ISTANCE:100 MΩ MIN. AND LOOSENESS, OF PARTS. TANCE: 60 mΩ MAX. AND LOOSENESS, OF PARTS. TANCE: 60 mΩ MAX. AND LOOSENESS, OF PARTS. TANCE: 60 mΩ MAX. OSION. CHECKED AR. SHIRAI | X | ATE | | COUNT | TO SO ₂ GAS | EXPOSE EXPOSE EXPOSE CRIPTION | D→5→30→5 min 1000 CYCLES. D AT 105°C, 300h. D AT -40°C, 120h. D IN 500 PPM FOR 8h. | | (3) NO I
(2) INS
(3) NO I
(1) COI
(2) NO I
(2) NO I
(2) NO | DAMAGE, CRACK NTACT RESIS' ULATION RES DAMAGE, CRACK NTACT RESIS' DAMAGE, CRACK NTACT RESIS' DAMAGE, CRACK NTACT RESIS' DAMAGE, CRACK NTACT RESIS' HEAVY CORR APPROVED CHECKED | AND LOOSENESS, OF PARTS. TANCE: 60 mΩ MAX. ISTANCE:100 MΩ MIN. AND LOOSENESS, OF PARTS. TANCE: 60 mΩ MAX. AND LOOSENESS, OF PARTS. TANCE: 60 mΩ MAX. AND LOOSENESS, OF PARTS. TANCE: 60 mΩ MAX. OSION. CHECKED AR. SHIRAI HS. 0ZAWA | X - X - X - X - X - X - 17.00 17.00 | ATE 04. 20 04. 20 | | COUNT COUNT NOTE: | TO SO ₂ GAS T DES UDE THE TEMPERA | TIME: 30 UNDER: EXPOSE EXPOSE EXPOSE CRIPTION | D→5→30→5 min 1000 CYCLES. D AT 105°C, 300h. D AT -40°C, 120h. D IN 500 PPM FOR 8h. | | (3) NO I
(2) INS
(3) NO I
(1) COI
(2) NO I
(2) NO I
(2) NO | DAMAGE, CRACK NTACT RESIS' ULATION RES DAMAGE, CRACK NTACT RESIS' DAMAGE, CRACK NTACT RESIS' DAMAGE, CRACK NTACT RESIS' DAMAGE, CRACK NTACT RESIS' HEAVY CORR APPROVED CHECKED DESIGNED | AND LOOSENESS, OF PARTS. TANCE: 60 mΩ MAX. ISTANCE:100 MΩ MIN. AND LOOSENESS, OF PARTS. TANCE: 60 mΩ MAX. AND LOOSENESS, OF PARTS. TANCE: 60 mΩ MAX. AND LOOSENESS, OF PARTS. TANCE: 60 mΩ MAX. OSION. CHECKED AR. SHIRAI HS. OZAWA TK. SHISHIKURA | DA 17. 0 17. 0 17. 0 | ATE O4. 20 O4. 20 O4. 20 O4. 20 O4. 20 | | COUNT COUNT NOTE: | TO SO ₂ GAS T DES UDE THE TEMPERA Jalification Test A | TIME: 30 UNDER: EXPOSE EXPOSE EXPOSE CRIPTION TURE RISH | D→5→30→5 min 1000 CYCLES. D AT 105°C, 300h. D AT −40°C, 120h. D IN 500 PPM FOR 8h. | ıt I | (3) NO II (2) INS (3) NO II (1) COII (2) NO II (1) COII (2) NO II (2) NO II (2) NO II (3) COII (4) COII (5) COII (6) COII (7) COII (7) COII (8) NO II (8) COII (9) COII (10) COIII | DAMAGE, CRACK NTACT RESIS' ULATION RES DAMAGE, CRACK NTACT RESIS' DAMAGE, CRACK NTACT RESIS' DAMAGE, CRACK NTACT RESIS' DAMAGE, CRACK NTACT RESIS DA | AND LOOSENESS, OF PARTS. TANCE: 60 mΩ MAX. ISTANCE:100 MΩ MIN. AND LOOSENESS, OF PARTS. TANCE: 60 mΩ MAX. AND LOOSENESS, OF PARTS. TANCE: 60 mΩ MAX. AND LOOSENESS, OF PARTS. TANCE: 60 mΩ MAX. OSION. CHECKED AR. SHIRAI HS. 0ZAWA TK. SHISHIKURA | DA 17. 0 17. 0 17. 0 0 0 0 0 0 0 0 0 0 0 0 0 | ATE O4. 20 O4. 20 O4. 20 O4. 20 O4. 20 |