| | OPERATING | RD | -35 | °C TO +85°C(N | NOTE 1) | | RAGE | | -10°C TO +60°C | (NOTE 3) | | |--|--|--|--|--|--|---|--|---|--|--|-----------------| | TEMPERATURE
OPERATING
HUMIDITY RANG | | | 20% TO 80%(NOTE 2) 100V AC / DC AWG#34,36: 0.3(MAX0.8A) AWG#40: 0.25A AWG#42: 0.2A AWG#44: 0.15A AWG#46: 0.1A | | | TEMPERATU
STORAGE | | | 40% TO 70%(NOT | , | | | RATING | VOLTAGE CURRENT | | | | | APPL | APPLICABLE CONNECTOR | | DF81※-30S-0 |).4H(##) | | | \triangle | | | | | | APPLICABLE CABLE 4) | | | THIN COAXIAL CABLE : AWG#36~AWG#46 / DISCRETE CABLE : AWG#34~40(Jacket : φ0. | | 6
<u>=</u> | | | | | | SPE | CIFICAT | ΓΙΟΝ | IS | | | | | | | EM | | | TEST METHOD | | | | RE | QUIREMENTS | QT | | | CONSTRU | | | | | | | | | | | Т | | GENERAL EX | AMINATION | | | MEASURING INS | STRUMENT. | | ACCOR | DING TO DF | RAWING. | X | 4 | | MARKING | | | MED VISUA | LLY. | | | | | | Х | | | | CHARACT | | | 0.1.1> | | | 001174 | OT 00 0 14 | A.V | | _ | | CONTACT RE | SISTANCE | 100m A | (DC OR 100 | U HZ). | | | | CT:80mΩ M/ | | X | | | INSULATION RESISTANCE | | 100V DC. | | | | | SHIELDING:80mΩ MAX.
50MΩ MIN. | | | X | + | | | | 250V AC FOR 1 min. | | | | | NO EL A | 01101/50 05 | 2 222 41/2 014/41 | | 4 | | VOLTAGE PR | | | | | | | NO FLA | OHUVEK OF | R BREAKDOWN. | Х | \perp | | | CAL CHARA | | | | | | _ | | | | | | MECHANICAL OPERATION | | 30 TIMES INSERTIONS AND EXTRACTIONS. | | | | | ① CONTACT RESISTANCE: NO VARIATION OF 50 mΩ OR MORE FROM INITIAL VALUE. SHIELDING RESISTANCE: NO VARIATION OF 50 mΩ OR MORE FROM INITIAL VALUE. ② NO DAMAGE, CRACK OR LOOSENESS OF | | | М | | | VIBRATION | | FREQUENCY 10 TO 55 Hz, SINGLE AMPLITUDE | | | | | PARTS. ① NO ELECTRICAL DISCONTINUITY OF 1 μs. | | | | + | | VIBRATION | | 0.75 mm, 3 DIRECTIONS × 10 CYCLE. | | | | | ② NO DAMAGE, CRACK OR LOOSENESS OF | | | | | | SHOCK | | 490 m/s ² DURATION OF PULSE 11 ms AT 3 TIMES FOR | | | | FOD 3 | PARTS. | | | | \neg | | | | I DIRECTI | IONS | 01 1 0202 1111 | ns AT3 TIMES | FOR 3 | PAR | 15. | | X | | | FNVIRONI | MENTAL CH | DIRECTI | | | ns AT3 TIMES | FOR 3 | PAR | 15. | | ^ | | | | MENTAL CH | HARACT | ERISTIC | S | ns AT 3 TIMES | | | TACT RESIS | STANCE: | | | | | GE OF | TEMPER
TIME
UNDER | ERISTIC
RATURE -5
30 | S
5 →+85 °C
→ 30 min
(THE TRANSFER | | | ① CON
NO NO | TACT RESIS | OF 50 m Ω OR MORE FRC | X | | | RAPID CHANG
TEMPERATUF
DAMP HEAT | GE OF
RE | TEMPER
TIME
UNDER | ERISTIC
RATURE -5
30
5 CYCLES. (
ER IS 2-3 MI | S
5 →+85 °C
→ 30 min
(THE TRANSFER | RRING TIME OI | | ① CON
NO \
INIT
SHIE
NO \ | TACT RESIS
VARIATION
IAL VALUE.
ILDING RES | OF 50 m Ω OR MORE FRC | M X | | | RAPID CHANG
TEMPERATUR | GE OF
RE | TEMPER
TIME
UNDER | ERISTIC
RATURE -5
30
5 CYCLES. (
ER IS 2-3 MI | S
5 →+85 °C
→ 30 min
(THE TRANSFER
NUTE.) | RRING TIME OI | F THE | ① CON
NO V
INIT
SHIE
NO V
INIT
② INSU | TACT RESIS
VARIATION
IAL VALUE.
ILDING RES
VARIATION
IAL VALUE.
LATION RES
DAMAGE, CF | OF 50 mΩ OR MORE FRC
ISTANCE: | M X | | | RAPID CHANG
TEMPERATUR
DAMP HEAT
(STEADY STA | GE OF
RE
TE) | HARACT TEMPER TIME UNDER CHAMBE EXPOSE | ERISTIC
RATURE -5
30
5 CYCLES. (
ER IS 2-3 MI
ED AT 40 ± | S
5 →+85 °C
→ 30 min
(THE TRANSFER
NUTE.) | RRING TIME OI
%, 96 h. | F THE | ① CON NO N INIT SHIE NO N INIT ② INSU ③ NO E PAR | TACT RESISTANTION VARIATION IAL VALUE. LIDING RESISTANTION VALUE. LATION RESIDAMAGE, CF TS. ECT SUCH | OF 50 m Ω OR MORE FRO
ISTANCE:
OF 50 m Ω OR MORE FRO
ISTANCE: 25 M Ω MIN.
RACK OR LOOSENESS OI
AS CORROSION WHICH | M X | | | RAPID CHANG TEMPERATUR DAMP HEAT (STEADY STA | GE OF
RE
.TE) | HARACT TEMPER TIME UNDER CHAMBE EXPOSE | ERISTIC -5 RATURE -5 30 5 CYCLES. (ER IS 2-3 MI ED AT 40 ± | S 5 → +85 °C → 30 min (THE TRANSFER NUTE.) 2 °C, 90 TO 95 ° | RRING TIME OI
%, 96 h. | F THE | ① CON NO V INIT SHIE NO V INIT ② INSU ③ NO E PAR NO DEF | TACT RESISTANTION VARIATION CARLOTION VARIATION VALUE. LATION RESIDAMAGE, CF TS. ECT SUCH | OF 50 m Ω OR MORE FROM ISTANCE: OF 50 m Ω OR MORE FROM ISTANCE: 25 m Ω MIN. RACK OR LOOSENESS OF AS CORROSION WHICH CTION OF CONNECTOR. | M X M X | | | RAPID CHANG
TEMPERATUR
DAMP HEAT
(STEADY STA | GE OF RE TE) (DE GAS | TEMPER TIME UNDER CHAMBE EXPOSE EXPOSE BOND 270°C 200°C @MANU | ERISTIC: RATURE -5 30 5 CYCLES. (ER IS 2-3 MI ED AT 40 ± ED IN 25±5F ING TEMPE MAX :5 sec MIN :30 sec AL SOLDER | S 5 →+85 °C → 30 min (THE TRANSFER NUTE.) 2 °C, 90 TO 95 ° PPM, 25±2°C, RATURE: MAX | RRING TIME OI
%, 96 h.
75%RH , 96h. | F THE | ① CON NO N | TACT RESISTANTION VARIATION RESISTANTION RESIDAMAGE, CATS. ECT SUCH S THE FUNCTORMATION | OF 50 m Ω OR MORE FRO
ISTANCE:
OF 50 m Ω OR MORE FRO
ISTANCE: 25 M Ω MIN.
RACK OR LOOSENESS OI
AS CORROSION WHICH | M X M X | | | RAPID CHANG TEMPERATUR DAMP HEAT (STEADY STA SULFUR DIOX RESISTANCE SOLDERING H | GE OF
RE
TE)
(DE GAS
TO
HEAT | TEMPER TIME UNDER CHAMBE EXPOSE EXPOSE (1) BOND 270°C 200°C (2) MANU 350°C SOLDER 245°C | ERISTIC: RATURE -5 30 5 CYCLES. () ER IS 2-3 MI ED AT 40 ± ED IN 25±5F ING TEMPE MAX :5 sec MIN :30 sec IAL SOLDER , 3sec MAX. RED AT SOL | S 5 → +85 °C → 30 min (THE TRANSFER NUTE.) 2 °C, 90 TO 95 ° PPM, 25±2°C, RATURE: MAX MAX | RRING TIME OI
%, 96 h.
75%RH , 96h.
TURE: | F THE | ① CON NO N INIT SHIE NO N INIT ② INSU ③ NO E PAR NO DEF IMPAIR NO DEF LOOSE | TACT RESISTANTION VARIATION IAL VALUE. LATION RESIDAMAGE, CFTS. ECT SUCH STHE FUNCTORMATION NESS OF THE | OF 50 m Ω OR MORE FROM ISTANCE: OF 50 m Ω OR MORE FROM ISTANCE: 25 m Ω MIN. RACK OR LOOSENESS OF AS CORROSION WHICH CTION OF CONNECTOR. OF CASE OF EXCESSIVE | M X M X | | | RAPID CHANG TEMPERATUR DAMP HEAT STEADY STA SULFUR DIOX RESISTANCE SOLDERING H | TE) TO HEAT | HARACT TEMPER TIME UNDER CHAMBE EXPOSE EXPOSE BOND 270°C 200°C 2MANU 350°C SOLDER 245°C (Sn-3.0 | ERISTIC RATURE -5 30 5 CYCLES. (ER IS 2-3 MI ED AT 40 ± ED IN 25±5F ING TEMPE MAX :5 sec MIN :30 sec IAL SOLDER , 3sec MAX. RED AT SOL FOR INSER | S 5 →+85 °C → 30 min (THE TRANSFER NUTE.) 2 °C, 90 TO 95 °C PPM, 25±2°C RATURE: MAX MAX RING TEMPERAT PRITTEMPERATE RING TEMPERATE | RRING TIME OI %, 96 h. 75%RH , 96h. TURE: FURE, N, 5 sec. | F THE | ① CON
NO N
INIT
SHIE
NO N
INIT
② INSU
③ NO L
PAR
NO DEF
IMPAIR
NO DEF
LOOSE | TACT RESISTANTION VARIATION IAL VALUE. LATION RESIDAMAGE, CFTS. ECT SUCH STHE FUNCTORMATION NESS OF THE | OF 50 m Ω OR MORE FROM ISTANCE: OF 50 m Ω OR MORE FROM ISTANCE: 25 m Ω MIN. RACK OR LOOSENESS OF AS CORROSION WHICH CONNECTOR. OF CASE OF EXCESSIVE HE TERMINALS. EVER A MINIMUM OF FACE BEING IMMERSED. | M X M X = X | | | RAPID CHANG TEMPERATUR DAMP HEAT (STEADY STA SULFUR DIO) RESISTANCE | TE) TO HEAT | TEMPER TIME UNDER CHAMBE EXPOSE EXPOSE (BOND 270°C 200°C (MANU 350°C SOLDER 245°C (Sn-3.0) DESCRIPTI | ERISTIC: RATURE -5 30 5 CYCLES. (ER IS 2-3 MI ED AT 40 ± ED IN 25±5F ING TEMPE MAX :5 sec MIN :30 sec IAL SOLDER , 3sec MAX. RED AT SOL FOR INSER 0Ag-0.5Cu) | S 5 →+85 °C → 30 min (THE TRANSFER NUTE.) 2 °C, 90 TO 95 °C PPM, 25±2°C RATURE: MAX MAX RING TEMPERAT PRITTEMPERATE RING TEMPERATE | RRING TIME OI %, 96 h. 75%RH , 96h. **URE: FURE; N, 5 sec. | F THE | ① CON NO N NO N INIT SHIE NO N INIT ② INSU ③ NO D PAR NO DEF IMPAIR NO DEF LOOSE SOLDEF 95 % CO | TACT RESISTANTION VARIATION IAL VALUE. LATION RESIDAMAGE, CFTS. ECT SUCH STHE FUNCTORMATION NESS OF THE | OF 50 m Ω OR MORE FROM ISTANCE: OF 50 m Ω OR MORE FROM ISTANCE: 25 m Ω MIN. RACK OR LOOSENESS OF AS CORROSION WHICH CTION OF CONNECTOR. OF CASE OF EXCESSIVE HE TERMINALS. | M X M X = X | ATI | | DAMP HEAT (STEADY STA SULFUR DIOX RESISTANCE SOLDERING H COUNT 2 REMARKS | TE) TO HEAT | HARACT TEMPER TIME UNDER CHAMBE EXPOSE EXPOSE BOND 270°C 200°C 2MANU 350°C SOLDER 245°C (Sn-3.0 | ERISTIC: RATURE -5 30 5 CYCLES. (ER IS 2-3 MI ED AT 40 ± ED IN 25±5F ING TEMPE MAX :5 sec MIN :30 sec IAL SOLDER , 3sec MAX. RED AT SOL FOR INSER 0Ag-0.5Cu) ON OF REV S-D-003000 | S 5 →+85 °C → 30 min (THE TRANSFER NUTE.) 2 °C, 90 TO 95 °C PPM, 25±2°C, RATURE: MAX RING TEMPERAT ETION DURATION ISIONS | RRING TIME OI %, 96 h. 75%RH , 96h. **URE: FURE; N, 5 sec. | F THE | ① CON NO N NO N INIT SHIE NO N INIT ② INSU ③ NO D PAR NO DEF IMPAIR NO DEF LOOSE SOLDEF 95 % CO | TACT RESIS VARIATION IAL VALUE. LATION RES DAMAGE, CF TS. ECT SUCH S THE FUNC ORMATION NESS OF TH | OF 50 mΩ OR MORE FRO ISTANCE: OF 50 mΩ OR MORE FRO ISTANCE: 25 MΩ MIN. RACK OR LOOSENESS OF AS CORROSION WHICH CTION OF CONNECTOR. OF CASE OF EXCESSIVE HE TERMINALS. OVER A MINIMUM OF FACE BEING IMMERSED. CHECKED MH. TSUCHIDA | M X M X = X X In the second of secon | ATI 08. | | COUNT 2 REMARKS NOTE:: INCLUD NOTE:: THE TE AND US | GE OF RE TE) (DE GAS TO HEAT ITY E THE TEMPERA DINDENSING RM "STORAGE" R SE. THE OPERATI | TEMPER TIME UNDER CHAMBE EXPOSE EXPOSE (BOND 270°C 200°C (MANU 350°C SOLDER 245°C (Sn-3.0 DESCRIPTI DIS TURE RISING | ERISTIC RATURE -5 30 5 CYCLES. (ER IS 2-3 MI ED AT 40 ± ED IN 25±5F ING TEMPE 6 MAX :5 sec 6 MIN :30 sec AL SOLDER 7, 3sec MAX. RED AT SOL FOR INSER 0Ag-0.5Cu) ON OF REV S-D-003000 G BY CURREN PRODUCTS ST ATURE AND H | S 5 → +85 °C → 30 min (THE TRANSFER NUTE.) 2 °C, 90 TO 95 °C PPM, 25±2°C, RATURE: MAX MAX RING TEMPERAT RION DURATION ISIONS T CORED FOR A LONG HUMIDITY RANGE CO | G PERIOD PRIOF | DESIGNAH. MIYA | ① CON NO N | TACT RESISTANTION VARIATION IAL VALUE. LATION RESIDAMAGE, CFTS. ECT SUCH STHE FUNCTORMATION NESS OF THE | OF 50 m\(\Omega\) OR MORE FROM ISTANCE: OF 50 m\(\Omega\) OR MORE FROM ISTANCE: 25 M\(\Omega\) MIN. RACK OR LOOSENESS OF EXCESSIVE TO THE TERMINALS. OVER A MINIMUM OF FACE BEING IMMERSED. CHECKED MH. TSUCHIDA D MH. YAMANE | M X M X = X X | ATI 08. | | RAPID CHANG TEMPERATUR DAMP HEAT (STEADY STA SULFUR DIOX RESISTANCE SOLDERING H SOLDERABILI COUNT A 2 REMARKS NOTE1: INCLUD NOTE2: NON CO NOTE3: THE TE AND US CONDIT NOTE4:IT COUL | GE OF RE TE) (DE GAS TO HEAT TY E THE TEMPERA DINDENSING RM "STORAGE" R E. THE OPERATI ION OF CONNECTIONS OF TRANS D BE VARIED DEI | TEMPER TIME UNDER CHAMBE EXPOSE EXPOSE EXPOSE (DBOND 270°C 200°C (SMANU 350°C (Sn-3.6) DESCRIPTI DIS TURE RISING REFERS TO P NG TEMPER PORTATION, PENDING ON | ERISTIC RATURE -5 30 5 CYCLES. (ER IS 2-3 MI ED AT 40 ± ED IN 25±5F ING TEMPE MAX:5 sec MIN:30 sec MIN:30 sec MAX. SEC MAX. RED AT SOL FOR INSER OAg-0.5Cu) ON OF REV S-D-003000 B BY CURREN RODUCTS ST ATURE AND H R BOARD MOL etc I THE CONDIT | S 5 → +85 °C → 30 min (THE TRANSFER NUTE.) 2 °C, 90 TO 95 °C PPM, 25±2°C, RATURE: MAX RING TEMPERAT DER TEMPERAT DER TEMPERAT DER TEMPERAT OURATION ISIONS T CORED FOR A LONGUMIDITY RANGE CONTING AND THE TEMPERAT FINDING AND THE TEMPERAT FINDING AND THE TEMPERAT | RRING TIME OF THE TH | DESIGNAH. MIYA | ① CON NO N | TACT RESIST VARIATION IAL VALUE. ILDING RESIST VARIATION RESIDAMAGE, OF TS. ECT SUCH STHE FUNK ORMATION NESS OF THE SUR | OF 50 m\(\Omega\$ OR MORE FROM ISTANCE: OF 50 m\(\Omega\$ OR MORE FROM ISTANCE: 25 M\(\Omega\$ MIN. RACK OR LOOSENESS OF AS CORROSION WHICH CONTROL OF CONNECTOR. OF CASE OF EXCESSIVE HE TERMINALS. OVER A MINIMUM OF FACE BEING IMMERSED. CHECKED MH. TSUCHIDA D MH. YAMANE O TS. SAKATA | M X M X = X X D, 13.4 | ATI 08. 04. 04. | | RAPID CHANG TEMPERATUR DAMP HEAT (STEADY STA SULFUR DIOX RESISTANCE SOLDERING H SOLDERABILI COUNT AND US CONDIT NOTE3: THE TE AND US CONDIT NOTE4: IT COUL "MAX" IS NOTE5: TEMPER | GE OF RE TE) (DE GAS TO HEAT TITY TIT | TEMPER TIME UNDER CHAMBE EXPOSE EXPOSE (BOND 270°C 200°C (MANU 350°C SOLDER 245°C (Sn-3.0 EXEFERS TO P ING TEMPER EXTORS AFTEI PORTATION, PENDING ON VIT AS ONLY TO CONNECTO | ERISTIC RATURE -5 30 5 CYCLES. (ER IS 2-3 MI ED AT 40 ± ED IN 25±5F ING TEMPE C MAX :5 sec MIN :30 sec MIN :30 sec MAL SOLDER , 3sec MAX. RED AT SOL FOR INSER 0Ag-0.5Cu) ON OF REV S-D-003000 B BY CURREN PRODUCTS ST ATURE AND H R BOARD MOL etc LITHE CONDITITIVO OF THEM R BODY ONLY | S 5 → +85 °C → 30 min (THE TRANSFER NUTE.) 2 °C, 90 TO 95 °C PPM, 25±2°C, RATURE: MAX MAX MAX CMAX CMAX CORED FOR A LONG HUMIDITY RANGE CO JUNTING AND THE TO CORED FOR A LONG HUMIDITY RANGE CO JUNTING AND THE TO AND THAT OF CA AND THAT OF CA | RRING TIME OF STATE O | DESIGN
AH. MIYA
R TO MODN-CONE
ORAGE | ① CON NO N | TACT RESIS VARIATION IAL VALUE. LIDING RES VARIATION RES DAMAGE, CF TS. ECT SUCH S THE FUNC ORMATION NESS OF TH | OF 50 m\(\Omega\$ OR MORE FROM ISTANCE: OF 50 m\(\Omega\$ OR MORE FROM ISTANCE: 25 M\(\Omega\$ MIN. RACK OR LOOSENESS OF AS CORROSION WHICH CONTROL OF CONNECTOR. OF CASE OF EXCESSIVE HE TERMINALS. OVER A MINIMUM OF FACE BEING IMMERSED. CHECKED MH. TSUCHIDA D MH. YAMANE O TS. SAKATA | M X M X X X X 13.4 | ATI 08. 04. 04. | | COUNT CONDITION OF EARLY COUNT | GE OF RE TE) (DE GAS TO HEAT HEAT E THE TEMPERA DIDENSING RM "STORAGE" R SE. THE OPERATI ION OF CONNEC IONS OF TRANS D BE VARIED DE RATING CURREN RATURE RISE OF | TEMPER TIME UNDER CHAMBE EXPOSE EXPOSE EXPOSE (SOLDER 245°C (Sn-3.0) TURE RISING REFERS TO P NG TEMPER TORS AFTEI PORTATION, PET NO NE TO | ERISTIC: RATURE -5 30 5 CYCLES. (ER IS 2-3 MI ED AT 40 ± ED IN 25±5F ING TEMPE MAX :5 sec MIN :30 sec MIN :30 sec MAX. RED AT SOL FOR INSER 0Ag-0.5Cu) ON OF REV S-D-003000 B BY CURREN RODUCTS ST ATURE AND H R BOARD MOL etc ITHE CONDIT ITHO OF THEM R BODY ONLY 5402, IEC60 | S 5 → +85 °C → 30 min (THE TRANSFER NUTE.) 2 °C, 90 TO 95 °C PPM , 25±2°C , RATURE: MAX MAX RING TEMPERAT TORED FOR A LONG HUMIDITY RANGE (JUNTING AND THE TEMPERAT TORED FOR | RRING TIME OF STATE O | DESIGN
AH. MIYA
R TO MODN-COND
ORAGE | ① CON NO N | TACT RESIS VARIATION IAL VALUE. ELDING RESIS VARIATION IAL VALUE. LATION RESIS DAMAGE, CF TS. ECT SUCH S THE FUNC ORMATION NESS OF TH | OF 50 m\(\Omega\$ OR MORE FROM ISTANCE: OF 50 m\(\Omega\$ OR MORE FROM ISTANCE: 25 M\(\Omega\$ MIN. RACK OR LOOSENESS OF AS CORROSION WHICH CONNECTOR. OF CASE OF EXCESSIVE HE TERMINALS. OVER A MINIMUM OF FACE BEING IMMERSED. CHECKED MH. TSUCHIDA D MH. YAMANE O TS. SAKATA TP. MATSUMOTO | M X M X X X X X 13.4 13.4 13.4 | ATI 08. 04. 04. | | RAPID CHANG TEMPERATUR DAMP HEAT (STEADY STA SULFUR DIOX RESISTANCE SOLDERING H SOLDERABILI COUNT 2 REMARKS NOTE1: INCLUD NOTE2: NON CO NOTE3: THE TE AND US CONDIT NOTE4:IT COUL "MAX" IS NOTE5: TEMPER Unless otherw | GE OF RE TE) (DE GAS TO HEAT ITY E THE TEMPERA NDENSING RM "STORAGE" RE E. THE OPERATI FION OF CONNECTIONS OF TRANS D BE VARIED DEI RATING CURRE RATURE RISE OF ise specified, re salification Test | TEMPER TIME UNDER CHAMBE EXPOSE EXPOSE EXPOSE EXPOSE (SOLDER 245°C (Sn-3.0) EXEFERS TO P NG TEMPER TORS AFTEI PORTATION, PENDING ON AFTEI PORTATION, PENDING AFTEI PORTATION, PENDING AFTEI PORTATION, PENDING AFTEI PORTATION, PENDI | ERISTIC: RATURE -5 30 5 CYCLES. (ER IS 2-3 MI ED AT 40 ± ED IN 25±5F ING TEMPE MAX :5 sec MIN :30 sec MAX :5 sec MIN :30 sec MIN :30 sec MAX :5 sec MIN :30 M | S 5 → +85 °C → 30 min (THE TRANSFER NUTE.) 2 °C, 90 TO 95 °C PPM , 25±2°C , RATURE: MAX MAX RING TEMPERAT TORED FOR A LONG HUMIDITY RANGE (JUNTING AND THE TEMPERAT TORED FOR | RRING TIME OF STATE O | DESIGN
AH. MIYA
R TO MODN-COND
ORAGE | ① CON NO DEFIMPAIR: DEFIMPAI | TACT RESIS VARIATION IAL VALUE. ELDING RESIS VARIATION IAL VALUE. LATION RESIS DAMAGE, CF TS. ECT SUCH S THE FUNC ORMATION NESS OF TH | OF 50 m\(\Omega\$ OR MORE FROM ISTANCE: OF 50 m\(\Omega\$ OR MORE FROM ISTANCE: 25 M\(\Omega\$ MIN. RACK OR LOOSENESS OF AS CORROSION WHICH CONTROL OF CONNECTOR. OF CASE OF EXCESSIVE HE TERMINALS. OVER A MINIMUM OF FACE BEING IMMERSED. CHECKED MH. TSUCHIDA D MH. YAMANE TS. SAKATA TP. MATSUMOTO | M X M X = X X 13. 13. 13. 1423-01 | ATI 08. 04. 04. |